TufGel 330
 Two-part, High Strength Silicone Gel

Description

This is one of a family of soft, adherent, silicone elastomeric gels designed for the encapsulation and protection of electronic components. It is a low viscosity, 2 -component system that is readily mixed in a $1: 1$ ratio. It is used to provide protection from vibration, thermal or mechanical shock and protection from water and many environmental contaminants. It has excellent dielectric properties.
Key Features

- Low modulus minimizes stress on parts and components
- Inherent tack further enables mechanical adhesion
- Potted or encapsulated assemblies can be repaired with modest effort
- Chemical adhesion to many substrates with primer

Use and Cure Information

IMPORTANT:
In order to achieve optimum performance, the same lot number of the A and B components should be used. Mixed lots may not obtain the performance criteria listed on the TDS or Certificate of Analysis.
The 'A' part of the product contains the platinum catalyst; great care should be taken when using automatic dispensing equipment. Please ensure that it is not contaminated by residual hydride containing rubber (Part B) in the dispensing equipment, as curing will result. If in doubt, it is advised to thoroughly purge the equipment with a suitable hydrocarbon solvent or silicone fluid.

Mixing

Both the ' A ' and ' B ' parts should be well stirred to ensure the material is uniform and any settled the fillers have been remixed. 3 times their volume, and mix until the colour of the mixture is uniform. For best results, we recommend degassing. Degas by intermittent evacuation, the larger volume of the mixing vessel helps prevent overflow during this operation. In the case of automatic dispensing with static mixing head, the two components should be degassed before processing. Recommended vacuum conditions are 30-50 mbar intermittently over 5-10 minutes. Cast the mixture either by gravity or pressure injection.

Inhibition of Cure

Great care must be taken when handling and mixing all addition cured silicone elastomer systems, ensuring that all the mixing tools (vessels and spatulas) are clean and constructed in materials which do not interfere with the curing mechanism. The cure of the rubber can be inhibited by the presence of compounds of nitrogen, sulphur, phosphorus and arsenic; organotin catalysts and PVC stabilizers; epoxy resin catalysts and even contact with materials containing certain of these substances e.g. moulding clays, sulphur vulcanised rubbers, condensation cure silicone rubbers, onion and garlic.

Curing Conditions

The data offers a guide to the rate of cure at various temperatures, mixing of the components at temperatures between 15 and $25^{\circ} \mathrm{C}$ is recommended to ensure adequate pot life for degassing and handling. The pot life can be extended to several hours by chilling the components before mixing.
It is important to check the compatibility in preliminary tests if unknown substrates are used.
Health \& Safety
Safety Data Sheets available on request.

Packaging

CHT Gels are available in a variety packaging including bulk containers. Please contact our sales department for more information.

Revision Date	20 Oct 2021
Revision No	4
Download Date	30 Apr 2024

